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SI Materials and Methods
Experimental Setup of the Measurement Chamber for Monitoring
Local Humidity Gradients. The probe measuring the relative hu-
midity (RH) above the flower (test probe) was introduced into the
chamber through the sleeve opening and connected with a metal
rod to a syringe pump (KDS-100; KD Scientific) outside the
chamber, allowing steady horizontal and vertical movement of the
probe over sections of 10 cm. The probe measuring the ambient
air (reference probe) was placed in the chamber at the same
height but 20 cm away from the flower. An infrared light-emitting
diode (IR-LED) light bulb (Minions Web) and an infrared-
sensitive webcam (C600; Logitech) allowed monitoring of an-
thesis. To track differences of RH in the floral headspace com-
pared with ambient humidity levels, data points obtained by the
reference probe were subtracted from corresponding test probe
values. Plants were setup ∼1 h before onset of anthesis.

Spatial Characterization of Humidity Gradients over Flowers in the
Whole-Plant Context and Artificial Flowers Used in Bioassays. In
contrast to measurements of single flowers, humidity gradients
were also characterized over flowers with the vegetative parts of
the plant present in the measurement chamber and artificial
flowers (see Materials and Methods for setup and dimensions).
The whole plant was placed into the chamber ∼1 h before an-
thesis. Immediately after the start of anthesis, the test probe was
moved along a horizontal transect (length, 100 mm; height above
flower, 10 mm; and speed, 11 mm/min), whereas the reference
probe was stationary. One transect was made per flower per

night. Humidity emissions from artificial flowers were charac-
terized as described for single flowers (Materials and Methods).

Comparison of Stomatal Density and Gas Exchange Rates of
Oenothera cespitosa Leaves and Petals. Gas exchange rates of
evening primrose leaves and petals were analyzed by means of a
portable infrared gas analyzer (LI-6400; LI-COR). The LI-6400
was run in an open mode, meaning an airflow is moved through
a controlled atmosphere surrounding 6 cm2 plant material en-
closed in a leaf chamber. Thus, the gas exchange system allowed
for independent control of CO2 and H2O, which were main-
tained steady state at 400 ppm and 40 ± 2% RH. The temper-
ature of the leaf chamber was held constant at 22 °C. Two
infrared analyzers, located in the sensor head close to the leaf
chamber, measured the absolute CO2 and H2O concentrations at
both the reference flow and the sample itself. Leaf conductance
to H2O were expressed as μmol·m−2·s−1). One leaf and one petal
were sampled per plant. After introducing the plant material
into the leaf chamber H2O levels were monitored real-time on
the LI-6400 console and as soon as the readings were stable, five
measurements were taken (one every 15 s), which were averaged
later. Experiments were made in a greenhouse under natural
photophase between 2130–0100 hours.
Epidermal peels of O. cespitosa leaves and petals were ob-

tained to assess the density of stomata. The adaxial and abaxial
epidermis of leaves were peeled off directly with forceps,
whereas clear nail polish was applied to the petals and peeled off
after it had dried. Stomatal density was evaluated under a mi-
croscope with 100× magnification (Eclipse 80i; Nikon).
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Fig. S1. (A) Comparison of horizontal dimensions of floral humidity gradients between isolated flowers and flowers with vegetative parts during anthesis in
Oenothera cespitosa (n = 8 and 5, respectively). (B) Comparison of humidity gradients at 20-mm increments. Treatments with an asterisk within one column are
significantly different.
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Fig. S2. Comparison of stomatal density on abaxial and adaxial sides of Oenothera cespitosa leaves and petals (n = 10 for each). Categories with different
letters are significantly different. (Wilcoxon signed-rank test, P < 0.05).

Fig. S3. Peels of abaxial epidermis of Oenothera cespitosa leaf (A) and petal (B) with visible stomata.
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Fig. S4. Stomatal conductance of Oenothera cespitosa leaves and petals (n = 19 each).
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Fig. S5. Comparison of water-vapor emissions of artificial flowers used in the bioassay and natural Oenothera cespitosa flowers. (A) Horizontal dimensions of
humidity gradients of artificial and natural flowers (n = 5 and 8, respectively). (B) Vertical dimensions of humidity gradients of artificial and natural flowers (n =
5 and 6, respectively).
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